PENGGUNAAN MOMEN INVARIANT, ECCENTRICITY, DAN COMPACTNESS UNTUK KLASIFIKASI MOTIF BATIK DENGAN K-NEAREST NEIGHBOUR

Nugroho Agus Haryono, Widi Hapsari, Angelique Angesti, Stheffany Felixiana

Abstract


Batik classification which have diverse motifs need to be done to distinguish a pattern with another. In this paper, we present batik motifs(Ceplok, Parang, Semen, and Nitik) classification using Hu Moment Invariants, Eccentricity, and Compactness feature description. In classification stage, K-nearest neighbor have been used, which is traditional nonparametric statistical classifier. Set of different experiments on binary images regular, opening image, and closing image of 200 images Batik from some batik literature published by Dinas Perindustrian, Perdagangan, dan Koperasi DIY have been done and variety of results have been presented. The results showed that the best classification result obtained from Hu Moment Invariants feature description.


Keywords


Batik, K-Nearest Neighbour, Moment Invariants, Eccentricity, Compactness

Full Text:

PDF

References


Achard, C., Devars, J., & Lacassagne, L. (2000). Object Image Retrieval with Image Compactness Vectors. International Conference on Pattern Recognition, (hal. 271-274). Barcelona.

Angesti, A. (2015). Klasifikasi Motif Batik Menggunakan Moment Invariants. Skripsi, Teknik Informatika, UKDW. Yogyakarta, Indonesia.

Dinas Perindustrian Perdagangan dan Koperasi DIY. (2007). Buku Motif Batik Yogya (1 ed.). Yogyakarta, Indonesia: Pena Persada Desktop Publishing.

Dinas Perindustrian Perdagangan dan Koperasi DIY. (2007). Buku Motif Batik Yogya Ceplok (1 ed.). Yogyakarta, Indonesia: Pena Persada Desktop Publishing.

Dinas Perindustrian Perdagangan dan Koperasi DIY. (2007). Buku Motif Batik Yogya Nitik (1 ed.). Yogyakarta, Indonesia: Pena Persada Desktop Publishing.

Dinas Perindustrian Perdagangan dan Koperasi DIY. (2007). Buku Motif Batik Yogya Parang dan Lereng (1 ed.). Yogyakarta, Indonesia: Pena Persada Desktop Publishing.

Dinas Perindustrian Perdagangan dan Koperasi DIY. (2007). Buku Motif Batik Yogya Semen (1 ed.). Yogyakarta, Indonesia: Pena Persada Desktop Publishing.

Du, J.-X., Wang, X.-F., & Zhang, G.-J. (2007). Leaf Shape Based Plant Species Recognition. Applied Mathematics and Computation , 883-893.

Felixiana, S. (2015). Klasifikasi Batik Menggunakan K-Nearest Neighbour Berbasis Nilai Eccentricity dan Compactness. Skripsi, Teknik Informatika, UKDW, Yogyakarta.

Hapsari, W., Haryono, N. A., & Nugraha, K. A. (2014). Klasifikasi Citra Motif Batik Menggunakan K-Nearest Neighbor Berbasis pada Warna, Bentuk, dan Tekstur. Laporan

Penelitian, LPPM Universitas Kristen Duta Wacana, Yogyakarta.

Hu, M. K. (1961). Pattern Recognition by Method of Moments. IRE Transactions of Information Theory , 49, hal. 179-187.

Jain, N., Sharma, S., & Sairam, R. M. (2013). Content Base Image Retrieval using Combination of Color, Shape, and Texture Feature. International Journal of Advanced Computer Research , 3 (8), 70-77.

Kamavisdar, P., Saluja, S., & Agrawal, S. (2013). Survey on Image Classification Approaches and Techniques. International Journal of Advanced Research in Computer and Communication Engineering Volume 9, August, 2009 , 1005-1009.

Kataria, A., & Singh, M. (2013). A Review of Data Classification Using K-Nearest Neighbour Algorithm. International Journal of Emerging Technology and Advanced Engineering , 354-360.

Kusrianto, A. (2013). Batik Filosofi, Motif dan Kegunaan. Yogyakarta: Andi.

Mercimek, M., Gulez, K., & Mumcu, T. V. (2005). Real Object Recognition Using Moment Invariants. Sadhana , 765-775.

Moertini, V. S., & Sitohang, B. (2005). Algorithms of Clustering and Classifying Batik Images Based on Color, Contrast and Motif. PROC. ITB Eng. Science Vol. 37 B, No. 2, 2005 , 141-160.

Mouine, S., Yahiaoui, I., & Verroust-Blondet, A. (2013). A Shape-based Approach for Leaf Classification using Multiscale Traingular Representation. ACM International Conference on Multimedia Retrieval (hal. 127 - 134). Dallas, Texas: ACM.

Ramadhan, I. (2013). Cerita Batik. Tangerang: Literati.

Russ, J. C. (2011). The Image Processing Handbook. India: CRC Press Taylor & Francis Group.

Salambue, R. (2013). Pengenalan Pola Tanda Tangan dengan Metode Moment Invariant dan Euclidean Distance. Prosiding Semirata FMIPA Universitas Lampung .




DOI: http://dx.doi.org/10.21460/inf.2015.112.411

Refbacks

  • There are currently no refbacks.