ANALISIS TEKSTUR PADA CITRA MOTIF BATIK UNTUK KLASIFIKASI MENGGUNAKAN K-NN

Kristian Adi Nugraha, Widi Hapsari, Nugroho Agus Haryono

Abstract


Indonesian’s Batik is one of culture heritage that recognized around the world. Batik has many variations of pattern based on their region. In this research, Batik would be used as subject for texture feature extraction. The value of this feature extraction would be used for classification using K-Nearest Neighbor (K-NN) method. Texture Feature Extraction components that used in this research were Entropy, Correlation, Homogeneity, and Energy. This research will investigate which component would give dominant effect for Batik’s pattern recognition. Batik pattern used in this research is pattern from Yogyakarta region. There are four patterns namely Ceplok, Parang, Semen, and Nitik. The result showed that there was no component from Texture Feature Extraction that gave dominant effect (average = 53,96%). Component with the highest value of accuracy is Correlation with a percentage of 55,83%. Whereas for K-NN classification, the best accuracy is 60% for K = 5.


Keywords


Klasifikasi K-NN, Ekstraksi Fitur Tekstur, Batik

Full Text:

PDF

References


Dinas Perindustrian Perdagangan dan Koperasi DIY. (2007). Buku Motif Batik Yogya Ceplok (1 ed.). Yogyakarta, Indonesia: Pena Persada Desktop Publishing.

Dinas Perindustrian Perdagangan dan Koperasi DIY. (2007). Buku Motif Batik Yogya Nitik (1 ed.). Yogyakarta, Indonesia: Pena Persada Desktop Publishing.

Dinas Perindustrian Perdagangan dan Koperasi DIY. (2007). Buku Motif Batik Yogya Parang

dan Lereng (1 ed.). Yogyakarta, Indonesia: Pena Persada Desktop Publishing.

Dinas Perindustrian Perdagangan dan Koperasi DIY. (2007). Buku Motif Batik Yogya Semen

(1 ed.). Yogyakarta, Indonesia: Pena Persada Desktop Publishing.

Gonzalez, R. C., & Woods, R. E. (2008). Digital Image Processing. New Jersey: Pearson Education, Inc.

Kamavisdar, P., Saluja, S., & Agrawal, S. (2013). Survey on Image Classification Approaches and Techniques. International Journal of Advanced Research in Computer and Communication Engineering Volume 9, August, 2009, 1005-1009.

Kusrianto, A. (2013). Batik Filosofi, Motif dan Kegunaan. Yogyakarta: Andi.

Moertini, V. S., & Sitohang, B. (2005). Algorithms of Clustering and Classifying Batik Images Based on Color, Contrast and Motif. PROC. ITB Eng. Science Vol. 37 B, No. 2, 2005, 141-160.

Mouine, S., Yahiaoui, I., & Verroust-Blondet, A. (2013). A Shape-based Approach for Leaf Classification using Multiscale Traingular Representation. ACM International Conference on Multimedia Retrieval (pp. 127 - 134). Dallas, Texas: ACM.

Ramadhan, I. (2013). Cerita Batik. Tangerang: Literati.

Russ, J. C. (2011). The Image Processing Handbook. India: CRC Press Taylor & Francis

Group.




DOI: http://dx.doi.org/10.21460/inf.2014.102.332

Refbacks

  • There are currently no refbacks.