PENERAPAN OPTICAL CHARACTER RECOGNITION (OCR) UNTUK PEMBACAAN METERAN LISTRIK PLN
Abstract
This paper will discuss an automatic recognition system to facilitate the activities of reading and recording of the electricity kWh meter. The system will analyze a captured image of the electricity kWh meter display using character recognition method. Prior to applying this method, each photo image of the kWh meter display will be pre-processed (i.e. converting the image to grayscale and determining the threshold). To detect the kWh meter display area, a smearing approach will be applied which connected the component labeling to character segmentation. To recognize each number, a template matching will be used. This study show that these steps were not yields good result in recognizing the characters in the electricity kWh meter. This is due to several factors, such as the persistence of noise that interfered with the character recognition, camera angles, lighting effect and the effect of the smearing limit.
Keywords
Full Text:
PDFReferences
Angeline, L., Teo, K., & Wong, F. (2009). Smearing Algorithm for Vehicle Parking Management System. 2nd Seminar on Engineering and Information Technology, (pp. 331-337). Kinabalu.
Asano, T., & Tanaka, H. (2010). In-place Algorithm for Connected Components Labeling. Journal of Pattern Recognition Research 1, 10-22.
Bahri, R., & Maliki, I. (2012). Perbandingan Algoritma Template Matching dan Feature Extraction pada Optical Character Recognition. Jurnal Komputer dan Informatika, Edisi. 1, Vol. 1, 29-35.
Devi, H. K. (2006). Thresholding: A Pixel - Level Image Processing Methodology Preprocessing Tecnique for an OCR System for the Brahmi Script. Ancient Asia, Vol. 1, 161-165.
Liliana, Budhi, G., & Hendra. (2010). Segmentasi Plat Nomor Kendaraan Dengan Menggunakan Metode Run - Length Smearing Algorithm. Industrial Electronic Seminar.
Ozbay, S., & Ergun, E. (2007). Automatic Vehicle Identification by Plate. World Academy of Science, Engineering and Technology Issue 9, 778-781.
Putra, D. (2010). Pengolahan Citra Digital. Yogyakarta: ANDI.
Qadri, M., & Asif, M. (2009). Automatic Number Plate Recognition System for Vehicle
Identification Using Optical Character Recognition . International Conference on
Education Technology and Computer, (pp. 335-338). Singapore.
Rizki, A., Jamal, A., Nugroho, A. S., Handoko, D., & Gunawan, M. (2010). Connected
Component Analysis Sebagai Metode Pencarian Karakter Plat Dalam Sietem Pengenalan Plat Nomor Kendaraan. Seminar on Intelligent Technology & Its Application, (pp. 300- 305). Surabaya.
Ruslianto, I., & Harjoko, A. (2011). Pengenalan Plat Nomor Mobil Secara Real Time. IJEIS, Vol. 1, No.2, 101-110.
Santi, C. N. (2011). Mengubah Citra Berwarna Menjadi GrayScale. Jurnal Teknologi Informasi DINAMIK Volume 16, No.1, 14-19.
Shapiro, L., & Stockman, G. (2000, March). Retrieved May 26, 2013, from https://lecturer.eepis- its.edu/~nana/index_files/referensi/computer_vision/Computer%20Vision.pdf
Sharma, A., & Chaudhary, D. R. (2013). Character Recognition Using Neural Network. International Journal of Engineering Trends and Technology (IJETT) - Volume4, 662- 667.
Tan, C., & Liu, Q. (2004). Extraction of newspaper headlines from microfilm for automatic indexing. IJDAR 6, 201-210.
Yadav, D., Sanchez, S., & Jorge, M. (2013). Optical Character Recognition for Hindi Language. Journal of Information Processing Systems,Vol.9, No.1, 117-140.
DOI: http://dx.doi.org/10.21460/inf.2014.102.331
Refbacks
- There are currently no refbacks.