Peranan Kontur dan Slope dalam Pengenalan Keaslian Tanda Tangan Menggunakan Dynamic Time Warping dan Polar Fourier Transform

Ignatia Dhian Estu Karisma Ratri, Hanung Adi Nugroho, Teguh Bharata Adji


The writer has seen that so far signatures are just validated manually, so there is possibility to create a system for hand signature recognition.  The objective of this research is to improve the method for hand signature recognition using combination method with different characteristic. Contour and slope used for special feature in this research. Contour and slope from image will be applied using Dynamic Time Warping (DTW). Another extraction feature that been used was Polar Fourier Transform (PFT).   The method employed for classification are Support Vector Machine (SVM).From the research results, the writer obtains the fact that the combination between the DTW and PFT using SVM classification, provide the better results in verification of an authentic hand signature with the accuracy of 93.23%.  it is expected that from this research, the results can be utilized in the process of verification of an authentic hand signature in near future dailylife.


Dynamic Time Warping; Polar Fourier Transform; Support Vector Machine; tanda tangan; kontur; slope

Full Text:



Chen, S., & Srihari, S. (2005). Use Of Exterior Contours And Shape Features In Off-Line Signature Verification. Proceeding Of The Eight Icdar, 2005. Ieee.

Hidyatno, A., Isnanto, R., & Buana, D. K. (2008, December). Identifikasi Tanda-Tangan Menggunakan Jaringan Saraf Tiruan Perambatan-Balik (Backpropagation). Jurnal Teknologi Vol.1 No.2 , pp. 100-106.

Huang, Z., & Leng, J. (2010). Analysis of Hu’s moment invariants on image scaling and rotation. Proceeding of 2010 2nd International Conference on Computer Engineering and Technology (pp. 476-480). Chengdu,China: IEEE.

Impedovo, D., & Pirlo, G. (2008). Automatic Signature Verification: The State of the Art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) ( Volume: 38, Issue: 5, Sept. 2008 ) (pp. 609-635). IEEE.

Kadir, A., & Susanto, A. (2013). Teori dan Aplikasi Pengolahan Citra. Yogyakarta: Andi Offset.

Kadir, A., Nugroho, L., Susanto, A., & Santosa, P. I. (2011). A comparative experiment of several shape methods in recognizing plants. International Journal of Computer Science & Information Technology (IJCSIT), Vol.3 No.3 , 256-263.

Kale, K. V., Deshmukh, P. D., Chavan, S. V., Kazi, M. M., & Rode, Y. S. (2013). Zernike moment feature extraction for handwritten Devanagari compound character recognition. Science and Information Conference (SAI). Science and Information Conference (SAI).

Kumawat, P., Khatri, A., & Nagaria, B. (2013). New Approach of Hand Writing Recognition using Curvelet Transform and Invariant Statistical Features. International Journal of Computer Applications Vol.61 No.18 , 21-25.

Larno. (2016, April 26). Polda Periksa Saksi Pemalsuan Tanda Tangan Gubernur. Retrieved September 26, 2016, from

Qader, H. A., Ramli, A. R., & Al-Haddad, S. (2007). Fingerprint Recognition Using Zernike Moments. The International Arab Journal of Information Technology (pp. 372-376). The International Arab Journal of Information Technology.

Ratri, I. D., Nugroho, H. A., & Adji, T. B. (2014). A Comparative Study on Signature Recognition. 1st International Conference on Information Technology, Computer and Electrical Engineering (ICITACEE) (pp. 167-171). Semarang, Indonesia: IEEE.

Ratri, I. D., Nugroho, H. A., & Adji, T. B. (2014). Pengaruh Kontur dan Slope dalam Pengenalan Tanda Tangan Offline dengan Dynamic Time Warping. Conference on Information Technology and Electrical Engineering 2014 (pp. 107-111). Yogyakarta: Jurusan Teknik Elektro dan Teknologi Informasi, FT UGM.

Saaidia, M., Lelandais, S., Vigneron, V., & Bedda, E.-M. (2007). Face detection by neural network trained with Zernike moments. ISPRA'07 Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation (pp. 36-41). World Scientific and Engineering Academy and Society (WSEAS) Stevens Point, Wisconsin, USA ©2007.

Soleymanpour, E., Rajae, B., & Pourreza, H. R. (2010). Offline handwritten signature identification and verification using contouRLEt transform and Support Vector Machine. Machine Vision and Image Processing (MVIP), 2010 6th Iranian. IEEE.

Solomon, C., & Breckon, T. (2011). Fundamentals of Digital Image Processing: a Practical Approach with Examples in Matlab. John Wiley & Sons, Inc.

Stamp, M. (2011). Information Security Principles and Practice, Second. John Wiley & Sons, Inc.



  • There are currently no refbacks.