Performance and Scalability Analysis of
Node.js and PHP/Nginx Web Application

Yoseph Pandji D. ! Willy Sudiarto Rahalrjo2
22084414@students.ukdw.ac.id willysr@ti.ukdw.ac.id

Abstract

Node.js is an application framework that can be used to build network server and
web application. Due to its maturity, Node.js should be tested in various aspects such as
performance and scalability to build dynamic web application. For comparison, we use
PHP/Nginx web development stack to build web application to compare and analyze
Node.js web application performance and scalability.

For research purpose, we build dummy applications based on Dijkstra Algorithm to
calculate shortest path between nodes, in this case Trans Jogja shelters. Using load
generator, we simulate concurrent user requests to test performance and scalability of
Node.js and PHP/Nginx web application. The general results of this research showed that
Node.js application had higher performance and scalability than PHP/Nginx application.

Keywords:Node.js, PHP/Nginx, Performance, Scalability

1. Introduction

World Wide Web Technology has rapidly become one of most popular internet
tool, with exponentially increasing number of users. To support the increasing number of
users,better software is needed. It also presents challenge for software designers to build
better performance and scalabilitysoftware. Ryan Dahl has developed an application
framework to build network and application server that focused in performance and
scalability. Node.js utilize the high performance and scalability V8 Google Chrome Engine
as JavaScript interpreter to build network server and also web application.

Before this journal was published, (McCune, 2011) has done a research to test the
performance and scalability of Node.js Web Server. His research was focused in I/O
performance and scalability of Node.js Web Server in comparison with Apache and Ruby
Web Server. The results of the research show ed that Node.js has better performance and
scalability than Apache and Ruby. In the following research, we will focused in testing
performance and scalability of Node.js Web Application combined with Node.js Web
Server. For comparison, we use PHP/Nginx application development stack to build a web
application. Nginx has become third most popular web server in the world and PHP as most
popular server side scripting language. From this research, we will see how far Node.js web
application can perform and scale compared with PHP/Nginx web application.

YInformatics Department, Faculty of Information Technology, Duta Wacana Christian University,
Yogyakarta

2Informatics Department, Faculty of Information Technology, Duta Wacana Christian University,
Yogyakarta

INFORMATIKA Vol. 9, No.2 Oktober 2013 117

Performance and Scalability Analysis of Node.js and PHP/Nginx Web Application

2. Theoretical Background
2.1. HTTP

HTTP is an application level protocol for distributed, collaborative, and hypermedia
data transmission. HTTP is a primary protocol that has been used in World Wide
Web(WWW) architecture. The standard HTTP Protocol that is currently used is HTTP 1.1
("Hypertext transfer protocol," June). This protocol use TCP for transport protocol that
provides reliable and connection oriented communication. In a HTTP communication, the
initiator of communication is a client that transmit HTTP request. After receiving the
request, HTTP server will send HTTP response to the client.

Request

F’,ﬁ Response
HTTF Client HTTP Server

Picture 1. HTTP Client-Server Communication

2.2. Node.js

Node.js is an asynchronous JavaScript framework that can be used to build network
application. It is a further development of V8 JavaScript Engine that has a built in network
and I/O libraries (Tilkov & Vinoski, 2010). The architecture of Node.js application is an
asynchronous event driven non-blocking I/O to handle concurrency. Node.js has brought
JavaScript into server environment, being a server side language. Using Node.js,
developers can build his own HTTP server and web applications with one language,
JavaScript.

2.3. Nginx / PHP

Nginx is a general purpose HTTP Server. Developed by Igor Sysoev, it was first
published in 2004. Nginx use asynchronous event driven non-blocking I/O architecture to
handle concurrency. Nginx run two kinds of processes in the operating system: worker
process for receiving, sending, forwarding the request and master process for worker
process management. It is possible to run multiple worker processes with one thread each
process so Nginx can utilize multi core processors. Nginx can be combined with PHP to
serve dynamic content via Fast CGIl. When request has been accepted by server, Nginx will
forward the request to PHP interpreter with proxy mechanism. After PHP interpreter
finished the process, the result will be forwarded back to Nginx and it will forward the
results in form of HTTP response. Combination of Nginx and PHP is also called an
application web development stack.

2.4. Dijkstra Algorithm

Dijkstra Algorithm is a graph algorithm founded by E.W Dijkstra. This algorithm is
an algorithm to solve optimum path problems between nodes in a graph. This algorithm can
also being used to solve optimum path from one node to all nodes in a graph concurrently.
Here is the step by step in calculating shortest path problem using Dijkstra Algorithm:

G=N,E) [1]

Where,

G = Graph

N = Node in the graph

E = Edge (path weight in graph)

118 INFORMATIKA Vol. 9, No.2 Oktober 2013

Yoseph Pandji D, Willy Sudiarto Raharjo

While calculating the shortest path, there are several data structures that are used to
complete the algorithm:

Dist. : Array that contains nodes where the shortest path from start node has been
decided

Queue : Array that contains remaining edge that have not been checked

Prev : Array that contains shortest path estimation from all nodes

Here is the algorithm pseudo code:

SET Prev and Queue variable

SET Dist to 0,

IF there are edges in graph THEN,

Shortlist edges in Queue based on shortest path from start node
Add u andthe closest edge in Queue to Dist

Check if all edges in Queue are connected to u.

Mmoo o

2.4. Performance and Scalability
"Performance measures how fast and efficiently a software system can complete
certain computing tasks, while scalability measures the trend of performance with
increasing load."(H.Liu, 2009). For a given environment that consists of hardware and
properly configured operating system, if the performance of a software system can't be
improved or continue to deteriorate rapidly even with hardware upgrade, then the software
system is not scalable.
While conducting performance and scalability test, we use these metrics:
a. Response Time:the time spent by the client send a request until the response is
received. It is quantified in ms.
b. Throughput:How many requests that can be served by server for a given time. It is
quantified in request/sec.
c. ResourcesUsage:How much resources are being used when system doing its task. It
consists of processor usage (% total processor time), RAM usage (%total RAM
usage), and network traffic (KB/sec).

To estimate the concurrent user, we use little law to quantify how many concurrent user that
are for a given load level.

R= ——Z [2]

Where,
R represents average response time under the given load level
Nvu represents concurrent user under the given load level.
Z represents the average user think time under the given load level.
Xo represents average throughput under the given load level.

3. Results And Discussion
3.1 System Implementation

We built web applications using Node.js and PHP as server side language. The web
applicationsis a system to calculate shortest path between Trans Jogjashelters.Client will
send HTTP request that contains two parameters: start shelter and destination shelter. The
application that resides on the server will process the request, calculate the shortest path and
send the response that contains list of shortest path from start shelter to destination shelter.

INFORMATIKA Vol. 9, No.2 Oktober 2013 119

Performance and Scalability Analysis of Node.js and PHP/Nginx Web Application

Trans Jogja Route

Know the route of Trans Jogja

SEARCH

Picture 2. Choose Start and End Shelter User Interface

User inputs the start and destination shelter and then click the submit button to send
the HTTP request to server. The difference between these two applications is the web server
and back end engine that generates the contents.

The Shortest Path is :

Picture 3. Shortest Path List Page

After receive the request that contains start and destination shelter, the applications
will operate shortest path calculation using Dijkstra Algorithm. After it is finished, server
will send the response that contains shortest path list web page back to the client.

3.2. Testing Methodology

For performance and scalability testing, we use point to point network topology, a
directly connected client and server. As a load generator that simulates concurrent HTTP
request, we use Apache Jmeter in client side. Apache Jmeter will simulate concurrent
communication channel that transmit HTTP request and receive HTTP response.

Q HTTP Request/ Response

Apache Jmeter

on client side Node.js + PHP/Nginx
Application on
Server Side

Picture 4. Network Topology for Testing

120 INFORMATIKA Vol. 9, No.2 Oktober 2013

Yoseph Pandji D, Willy Sudiarto Raharjo

When conducting performance testing, we configure Apache Jmeter to simulate
HTTP Request that are sent by 1000 users. There are 4 kinds of HTTP Request that
represent 4 longest path from all possible shortest path. To analyze the data, we use Z-test
to compare the average response time and throughput results with 30 times sampling.

When conducting scalability testing, we configure Apache Jmeter to simulate 4000
concurrent HTTP requests. The increasing load will be implemented in load time that
increase from 30 second until the performance of applications isdegraded.

3.3.Performance Test Results
a. Response Time.

From performance test results, we can see that in all scenarios, the average response
time of Node.js application was lower than the average response time of PHP/Nginx. In all
scenarios, the average response time of Node.js application were in the range of 4 ms while
PHP/Nginx application were in the range of 8 ms.

Table 1.
Average Response Time
Scenario Node Nginx
1 4.566666667 8.966667
2 4.366666667 8.9
3 43 8.466667
4 4.266666667 7.833333

From hypothesis test result, we can see that average response time of Node.js application
were lower than PHP/Nginx in all scenarios.

Table 2. Hypothesis Testing Results of AverageResponse Time

Scenario Hypothesis Test Result
The average response time of Node.js application was lower than average
1)) C
response time of PHP/Nginx application.
The average response time of Node.js application was lower than average

2 response time of PHP/Nginx application.

3 The average response time of Node.js application was lower than average
time of PHP/Nginx application.

4 The average response time of Node.js application was lower than average

response time of PHP/Nginx application.

b. Throughput.
From performance test results, we can see that in all scenarios, the average
throughput of Node.js application was lower than the average response time of PHP/Nginx.

Table 3. Average Throughput

Scenarios Node Nginx
1 336.3994 331.6277
2 332.035 331.8205
3 328.8786 334.1049
4 333.509 335.0806

From hypothesis test result, we can see that average throughput of Node.js application were
lower than PHP/Nginx in all scenarios.

INFORMATIKA Vol. 9, No.2 Oktober 2013 121

Performance and Scalability Analysis of Node.js and PHP/Nginx Web Application

Table 4. Hypothesis Testing Results of Throughput

Scenario Hypothesis Test Result

1 The average throughput of Node.js application is lower than average
throughput of PHP/Nginx application.

5 The average throughput of Node.js application is lower than average
throughput of PHP/Nginx application.

3 The average throughput of Node.js application is lower than average
throughput of PHP/Nginx application.

4 The average throughput of Node.js application is lower than average
throughput of PHP/Nginx application.

3.4.Scalability Test Results
a. Maximum Throughput

From the test results, it seems that the maximum throughput of Node.js application
was around 31746.434263 request /second with the average response time1190 was ms. The
maximum throughput of PHP/Nginx application was around 920.1226039 request/second
and the average response time was 1074 ms. Scalability testing for Node.js application was
stopped at 480 second load time because the application performance was degraded since
the load time is at 390 second. Scalability testing for PHP/Nginx application was stopped at

210 second load time because the RAM usage was beyond capacity and the server started to
crash.

Throughput(request/second)

3500
3000 -
=)
S 2500 -
Q
-gZOOO—
& 1500 -
£
= 1000 - B Node.js
500 -
& Nei
0 - | Nginx
ocoooo0oo0o0o0oQo088ceoo0caoag
MO ANNMOAIRNRRNOoa DD
LBEEE2 ddd N SN D o nnNn < s <
U S R N e B 7. T 7 T 7S S R R]
wwwmmmmmmmwmmmmm
S>30 0o 30l %0vuvoow
0'0'0'33330.30.0.33333
Qo Qo o ocooco o Pooooo
xxx 0000 laolooaoaooa
X o £ o X o £ <

Picture 5. Average Throughput in Scalability Testing

Using little law, we could estimate the concurrent users that stressed the Node.js application

(Nvu) :
Noy = 3176434263 %1190
va= 1000

= 3779.95677297

From the calculation, we concluded that maximum performance of Node.js application is
when there are 3780 concurrent that are actually stressing the system with average
throughput is around 3176.434263 request / second and average response time is around
1190 ms.

Maximum throughput of PHP/Nginx application was around 920.1226039 request /
second with average response time around 1320 ms. Using Little Law, the estimation of
concurrent users that stressed the PHP/Nginx application (Nvu) :

122 INFORMATIKA Vol. 9, No.2 Oktober 2013

Yoseph Pandji D, Willy Sudiarto Raharjo

_ 920.1226039

vu = 1000 = 1214561837148

From the calculation, we concluded that maximum performance of PHP/Nginx application
is when there are 1215 concurrent users that are actually stressing the system.

b. Resource Usage

From processor usage perspective, the average processor usage of Node.js
application was beyond 70% when the load time was 30 second and continued to increase

until it reach around 92% while processor usage of PHP/Nginx application was around 42%
and continued to increase until the server started to crash.

TotalProcessorTime(%)

100
80 -
60 -
40 -
20 - ® Node.js
O' T 1 T 1T T T 71T 1 INginx
ooo0oo0o0o0oQo88eo0ag
momwaHNl\mmmemw
22 Addd NS NDTDTooon s <
U S R A I R R R
VOV DV KBV LV gDV BV
JJDGJGJCIJCIJ:QJ:’:GJCDQ)GJGJ
0'0'533330.30.0.33333
OJGJO)C'C'CYUCUUCUCUC'UUUC'
mmxwwwommmmwmwww
X o x o o X @ @ o o

Picture 6. Processor Usage

The RAM usage of Node.js application was constantly around 23 % while the PHP/Nginx

continue to increase until the server started to crash. The high usage of RAM was the reason
of application performance degradation.

TotalRAMUsage(%)

100
80
60 -
40 -
20 + 1T Node.js
O“ T 1 T T T T T T T 1 lNginx
cooooo0oo0oQ 0880009
mkDmNmOOHNl\mmkDmNmoo
b Hg ¥ e Y222
VUV VOO YV Hh o n
(] v QO
JDJGJQJGJGJ:CU::CUGJQJCDGJ
UUU::’::U:UUD::::
GJO)GJC'UUC'QJUCU@UC'D'UC'
mmmwwwwmwmmwwwmw
X x o o< o X X X o o<

Picture 7. Total RAM Usage

3.5. Analysis
a. Performance

In all scenarios, Average response time of Node.js application are lower than
PHP/Nginx application. It means that the speed of Node.js application to process all the http

INFORMATIKA Vol. 9, No.2 Oktober 2013 123

Performance and Scalability Analysis of Node.js and PHP/Nginx Web Application

request is faster than PHP/Nginx application. In other hand, average throughput of Node.js
Application is higher than PHP/Nginx application.

b. Scalability

From throughput results, we can see that Node.js application's throughput is higher
than PHP/Nginx application. Node.js application can handle more requests concurrently
than PHP/Nginx application did. Performance of Node Application continue to increase
when the load is increasing whereas PHP/Nginx application got saturated when the load is
increasing.

From the resource usage, the usage of processors of those two applications was
getting increased, but if we see from the average throughput that can be reached, Node.js
application could continue to scale while PHP/Nginx application started to deteriorate. The
overloaded RAM usage has been the main reason why PHP/Nginx performance was
degraded.

4. Conclusion

In term of performance, Node.js application response time was lower than
PHP/Nginx application, it means that Node.js application had faster responsiveness than
PHP/Nginx application. In term of performance, PHP/Nginx application could handle more
request than Node.js application. PHP/Nginx application had higher throughput than
PHP/Nginx. In term of scalability, Node.js application can handle more request than
PHP/Nginx. Throughput of Node.js continue to increase when the workload increase, in
other side PHP/Nginx throughput was saturated when the workload increase.In term of
scalability, Node.js application used resource more efficient than PHP/Nginx application
especially in RAM usage. Node.js application used slightly lower RAM usage than
PHP/Nginx application.

References

Hypertext transfer protocol. (June, 1999). Retrieved from http://www.ietf.org/rfc/rfc2616.txt (last accessed
April 2,2012).

H.Liu, H. (2009). Software Performance and Scalability: A Quantitative Approach . Wiley.

McCune, R. R. (2011). Node.js Paradigm and Benchmark. Informally published manuscript, University of
Notre Dame, Indiana

Tilkov, S., & Vinoski, S. (2010). Node.js: Using JavaScript to Build High-Performance Network Programs.
Internet Computing, IEEE, 14(6), 80 - 83. doi: 10.1109/MIC.2010.145

124 INFORMATIKA Vol. 9, No.2 Oktober 2013

